Issue 18, 2018

BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells

Abstract

Two small molecules denoted as BD-pPor and BD-tPor composed of a central BODIPY core surrounded with two DPP and two porphyrin units have been designed and synthesized. In BD-pPor and BD-tPor, porphyrins are linked to the central BODIPY by phenyl and thiophene bridges, respectively. The optical and electrochemical properties were systematically investigated in order to employ them as donors along with PC71BM as an acceptor for solution processed bulk heterojunction organic solar cells. After the optimization of the active layer, the organic solar cells based on BD-pPor and BD-tPor exhibit overall power conversion efficiencies of 6.67% and 8.98% with an energy loss of 0.63 eV and 0.50 eV. The low value of energy loss for BD-tPor may be related to the low LUMO offset between the BD-tPor and PC71BM (0.31 eV) as compared to that between BD-pPor and PC71BM (0.36 eV). The low energy loss also leads to a higher value of open-circuit voltage for the BD-tPor based OSC than its BD-pPor counterpart, despite the slightly deeper HOMO energy level of BD-pPor. The enhanced values of Jsc and FF of the BD-tPor based OSCs may be related to the better exciton dissociation and charge transport, as confirmed from the PL spectra and charge carrier mobility. These results indicate that the combination of BODIPY, DPP and porphyrin in the same conjugate is very promising for small molecule organic solar cells.

Graphical abstract: BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2018
Accepted
06 Apr 2018
First published
10 Apr 2018

J. Mater. Chem. A, 2018,6, 8449-8461

BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells

L. Bucher, N. Desbois, E. N. Koukaras, C. H. Devillers, S. Biswas, G. D. Sharma and C. P. Gros, J. Mater. Chem. A, 2018, 6, 8449 DOI: 10.1039/C8TA01291A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements