Jump to main content
Jump to site search

Issue 13, 2018
Previous Article Next Article

Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3

Author affiliations

Abstract

In situ Raman spectroscopy shows the simultaneous incorporation of small amounts of Bi3+ and Yb3+ into the lattice of BaTiO3 to break the average symmetry inferred from X-ray powder diffraction analysis and permittivity measurements. In particular, Bi3+ with a stereochemically active lone-pair of electrons induces severe lattice strain and the coexistence of different local crystal symmetries over a wide temperature range, effectively controlling the physical properties, such as the temperature dependence of the permittivity and the Curie temperature. These results show that compositional gradients based in small variations of these two dopants could successfully explain the enhanced thermal stability of the permittivity in core–shell type ceramics, whereas the lower capacitance of the shell can also cap the maximum permittivity at the Curie temperature.

Graphical abstract: Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Dec 2017, accepted on 08 Feb 2018 and first published on 15 Mar 2018


Article type: Paper
DOI: 10.1039/C7TA11096K
Citation: J. Mater. Chem. A, 2018,6, 5443-5451
  • Open access: Creative Commons BY license
  •   Request permissions

    Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3

    M. Deluca, Z. G. Al-Jlaihawi, K. Reichmann, A. M. T. Bell and A. Feteira, J. Mater. Chem. A, 2018, 6, 5443
    DOI: 10.1039/C7TA11096K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements