Issue 44, 2018

Mechanics and nanovoid nucleation dynamics: effects of polar functionality in glassy polymer networks

Abstract

We use molecular simulations and experiments to rationalize the properties of a class of networks based on dicyclopentadiene (DCPD), a polymer with excellent fracture toughness and a high glass transition temperature (Tg), copolymerized with 5-norbornene-2-methanol (NBOH). DCPD is a highly non-polar hydrocarbon, while NBOH contains a hydroxy group, introducing polar functionality and hydrogen bonds (H-bonds). NBOH thus represents a possible route to improve the chemical compatibility of DCPD-based networks with less-hydrophobic materials. We systematically vary the NBOH content (polar chemistry) in DCPD networks, while keeping other network parameters nearly constant, including the molecular weight between cross-links, chain rigidity, and Tg. Using molecular dynamics (MD) simulations, we quantify the thermovolumetric and mechanical properties, including Tg, cohesive energy density, stiffness, and yield strength. We compare these results with experiments on networks of similar composition, finding good agreement. The relation between these properties and polar chemistry are studied by examining a secondary network of physical cross-links, formed by hydrogen bonds between NBOH units. Further, we examine nanovoid formation, an energy dissipation mechanism hypothesized to contribute to the toughness of pDCPD. Using metadynamics to accelerate sampling, we quantify the nanovoid nucleation rate under hydrostatic tension, similar to the stress state in the plastic zone preceding a crack tip. Small additions of NBOH have minimal effect, but the rate drops steeply with larger amounts. Several properties are mapped at nanometer scales, including stiffness and mobility, and associated with void nucleation. Estimates of the length- and time-scale of the plastic zone near a crack tip are used in discussing nanovoid formation as a plausible toughening mechanism in these materials. Overall, the results suggest that pDCPD tolerates the addition of some polar chemistry without degrading its excellent mechanical properties.

Graphical abstract: Mechanics and nanovoid nucleation dynamics: effects of polar functionality in glassy polymer networks

Article information

Article type
Paper
Submitted
20 Jul 2018
Accepted
01 Sep 2018
First published
05 Sep 2018

Soft Matter, 2018,14, 8895-8911

Mechanics and nanovoid nucleation dynamics: effects of polar functionality in glassy polymer networks

R. M. Elder, T. R. Long, E. D. Bain, J. L. Lenhart and T. W. Sirk, Soft Matter, 2018, 14, 8895 DOI: 10.1039/C8SM01483C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements