Issue 34, 2018

Salt-dependent properties of a coacervate-like, self-assembled DNA liquid

Abstract

Liquid–liquid phase separation of a polymer-rich phase from a polymer-dilute solution, known generally as coacervation, has been observed in a variety of biomolecular systems. Understanding of this process, and the properties of the resulting liquid, has been hampered in typical systems by the complexity of the components and of the intermolecular interactions. Here, we examine a single-component system comprised entirely of DNA, in which tetravalent DNA nanostar particles condense into liquids through attractive bonds formed from basepairing interactions. We measure the density, viscosity, particle self-diffusion, and surface tension of NS-liquid droplets. The sequence- and salt-dependent thermodynamics of basepairing accounts for most properties, particularly indicating that particle transport is an activated process whose barrier is the breaking of a single bond, and that very few bonds are broken at the surface. However, more complex effects are also seen. The relation of density to salt shows that electrostatic screening compacts the NS particles. Further, the interrelation of the transport properties indicates a breakdown of the Stokes–Einstein relation. This observation, in concert with the low surface tension and single-bond transport barrier, suggests this DNA liquid has a heterogeneous, clustered structure that is likely enabled by internal NS particle flexibility. We discuss these results in comparison to other coacervate systems.

Graphical abstract: Salt-dependent properties of a coacervate-like, self-assembled DNA liquid

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2018
Accepted
01 Aug 2018
First published
14 Aug 2018

Soft Matter, 2018,14, 7009-7015

Author version available

Salt-dependent properties of a coacervate-like, self-assembled DNA liquid

B. Jeon, D. T. Nguyen, G. R. Abraham, N. Conrad, D. K. Fygenson and O. A. Saleh, Soft Matter, 2018, 14, 7009 DOI: 10.1039/C8SM01085D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements