Jump to main content
Jump to site search

Issue 31, 2018
Previous Article Next Article

Redox sensitive protein droplets from recombinant oleosin

Author affiliations

Abstract

Protein engineering enables the creation of materials with designer functionality and tailored responsiveness. Here, we design a protein with two control motifs for its phase separation into micron sized liquid droplets – one driven by a hydrophobic domain and the other by oxidation of a disulfide bond. Our work is based on the plant surfactant protein, oleosin, which has a hydrophobic domain but no cysteines. Oleosin phase separates to form liquid droplets below a critical temperature akin to many naturally occurring membrane-less organelles. Sequence mutations are made to introduce a cysteine residue into oleosin. The addition of a cysteine causes phase separation at a lower concentration and increases the phase transition temperature. Adding a reducing agent to phase-separated, cysteine-containing oleosin rapidly dissolves the droplets. The transition temperature is tuned by varying the location of the cysteine or by blending the parent cysteine-less molecule with the cysteine-containing mutant. This provides a novel way to control protein droplet formation and dissolution. We envision this work having applications as a system for the release of a protein or drug with engineered sensitivity to reducing conditions and as a mimic of membrane-less organelles in synthetic protocells.

Graphical abstract: Redox sensitive protein droplets from recombinant oleosin

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 May 2018, accepted on 16 Jul 2018 and first published on 19 Jul 2018


Article type: Paper
DOI: 10.1039/C8SM01047A
Citation: Soft Matter, 2018,14, 6506-6513
  •   Request permissions

    Redox sensitive protein droplets from recombinant oleosin

    E. H. Reed and D. A. Hammer, Soft Matter, 2018, 14, 6506
    DOI: 10.1039/C8SM01047A

Search articles by author

Spotlight

Advertisements