Issue 19, 2018

Adhesion of like-charged lipid vesicles induced by rod-like counterions

Abstract

Adhesion of electrically charged lipid vesicles and subsequent formation of multi-vesicle aggregates can be induced by multivalent rod-like counterions. Motivated by recent experimental observations we calculate the equilibrium conformation of two identical vesicles that adhere onto each other. The degree of adhesion reflects the competition between predominantly electrostatic attraction and vesicle bending. Our model assumes the enclosed vesicle volume is allowed to freely adjust and the area of the vesicle membrane is fixed and remains constant. We describe the electrostatic attraction, which arises from the bridging of the rod-like counterions between the two like-charged vesicles, using a recently developed mean-field theory. Bending fluctuation-induced entropic repulsion, depletion forces between the apposed vesicle membranes induced by the rod-like counterions, and van der Waals attraction between the vesicles are estimated to induce only minor shifts in the equilibrium vesicle conformation. Our model predicts the dependence of vesicle adhesion (including its onset) exclusively from material or molecular parameters such as vesicle size and charge, bending stiffness of the membrane, effective length and net charge of the added rod-like counterions, as well as concentrations of rod-like counterions and additional salt content. We demonstrate that the demixing of charged lipids between the adhesion region and the uncomplexed parts of the vesicles has only a minor influence on the degree of adhesion. Our predictions are in qualitative agreement with recent experimental findings.

Graphical abstract: Adhesion of like-charged lipid vesicles induced by rod-like counterions

Article information

Article type
Paper
Submitted
18 Mar 2018
Accepted
27 Apr 2018
First published
30 Apr 2018

Soft Matter, 2018,14, 3935-3944

Adhesion of like-charged lipid vesicles induced by rod-like counterions

G. Volpe Bossa, T. P. D. Souza and S. May, Soft Matter, 2018, 14, 3935 DOI: 10.1039/C8SM00559A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements