Jump to main content
Jump to site search

Issue 7, 2018
Previous Article Next Article

An option for stranded renewables: electrolytic-hydrogen in future energy systems

Author affiliations

Abstract

Future energy systems will likely be challenged by large quantities of stranded renewable electricity that cannot be used in the conventional electrical grid. Using surplus electricity for electrolysis and thereby producing hydrogen is seen as a valuable solution functioning as an energy storage and transport medium and providing other sectors, such as transport or industry, with required feedstocks at the same time. In this study, we suggest using a set of assessment tools to highlight the quantitative potential, cost and environmental performance of electrolytic hydrogen production, transmission and storage. Our approach employs power sector modeling for Germany with three sequential elements: (i) a market model, (ii) power flow modeling, and (iii) re-dispatch modeling. The results were then used to identify suitable locations for large scale electrolysis plants. Electrolysis, large-scale gas storage, a transmission pipeline and other system components were scaled-up and the total cost was calculated. In a final step, we looked at greenhouse gas emissions as one of the major aspects regarding the environmental performance of the hydrogen delivered. Based on our analysis, annual hydrogen production rates of up to 189 kilotons have been determined for the state of Schleswig-Holstein, which exhibits the largest potential for utilizing surplus power from renewables. The economic analysis reveals a hydrogen cost of 3.63–5.81€ kg−1, including installations, for large-scale storage and transmission. If surplus power from renewables is used for hydrogen production, the total greenhouse gas emissions of hydrogen provision were determined to be up to 435 gCO2-eq. kg−1. Using grid electricity, this value increased to some 17 000 gCO2-eq. kg−1.

Graphical abstract: An option for stranded renewables: electrolytic-hydrogen in future energy systems

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Jan 2018, accepted on 02 May 2018 and first published on 21 May 2018


Article type: Paper
DOI: 10.1039/C8SE00008E
Citation: Sustainable Energy Fuels, 2018,2, 1500-1515
  •   Request permissions

    An option for stranded renewables: electrolytic-hydrogen in future energy systems

    T. Grube, L. Doré, A. Hoffrichter, L. E. Hombach, S. Raths, M. Robinius, M. Nobis, S. Schiebahn, V. Tietze, A. Schnettler, G. Walther and D. Stolten, Sustainable Energy Fuels, 2018, 2, 1500
    DOI: 10.1039/C8SE00008E

Search articles by author

Spotlight

Advertisements