Jump to main content
Jump to site search


A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes

Author affiliations

Abstract

Extra-synaptic exocytosis is an essential component of cellular communication. A knowledge gap exists in the exocytosis of the non-redox active transmitter acetylcholine. Using the nano-interface between two immiscible electrolyte solutions and scanning electrochemical microscopy (SECM), a high resolution spatiotemporal study of acetylcholine exocytosis is shown from an individual neuronal soma. The nanoelectrode was positioned ∼140 nm away from the release sites on the soma using an SECM. The quantitative study enables the obtaining of key information related to cellular communication, including extracellular concentration of the neurotransmitter, cellular permeability, Ca2+ dependence on somatic release, vesicle density, number of molecules released and the release dynamics. Measurements were achieved with a high signal to noise ratio of 6–19. The released neurotransmitter with a concentration of 2.7 (±1.0) μM was detected at the nanoelectrodes with radii of 750 nm to 860 nm.

Graphical abstract: A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Mar 2018, accepted on 14 May 2018 and first published on 15 May 2018


Article type: Edge Article
DOI: 10.1039/C8SC01131A
Citation: Chem. Sci., 2018, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes

    Theresa M. Welle, K. Alanis, M. L. Colombo, J. V. Sweedler and M. Shen, Chem. Sci., 2018, Advance Article , DOI: 10.1039/C8SC01131A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements