Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

Translating molecular detections into a simple temperature test using a target-responsive smart thermometer

Author affiliations

Abstract

While it has been well recognized that affordable and pocket-size devices play a major role in environmental monitoring, food safety and medical diagnostics, it often takes a tremendous amount of resources to develop such devices. Devices that have been developed are often dedicated devices that can detect only one or a few targets. To overcome these limitations, we herein report a novel target-responsive smart thermometer for translating molecular detection into a temperature test. The sensor system consists of a functional DNA–phospholipase A2 (PLA2) enzyme conjugate, a liposome-encapsulated NIR dye, and a thermometer interfaced with a NIR-laser device. The sensing principle is based on the target-induced release of PLA2 from the DNA–enzyme conjugate, which catalyzes the hydrolysis of liposome to release the NIR dye inside the liposome. Upon NIR-laser irradiation, the released dye can convert excitation energy into heat, producing a temperature increase in solution, which is detectable using a thermometer. Considering the low cost and facile incorporation of the system with suitable functional DNAs to recognize many targets, the system demonstrated here makes the thermometer an affordable and pocket-size meter for the detection and quantification of a wide range of targets.

Graphical abstract: Translating molecular detections into a simple temperature test using a target-responsive smart thermometer

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Dec 2017, accepted on 07 Mar 2018 and first published on 07 Mar 2018


Article type: Edge Article
DOI: 10.1039/C7SC05325H
Citation: Chem. Sci., 2018,9, 3906-3910
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Translating molecular detections into a simple temperature test using a target-responsive smart thermometer

    J. Zhang, H. Xing and Y. Lu, Chem. Sci., 2018, 9, 3906
    DOI: 10.1039/C7SC05325H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements