Issue 57, 2018

A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface

Abstract

A lot of research attention has been paid to designing and exploring efficient adsorbents for HCHO adsorption and decomposition. Herein, we have demonstrated a highly active material, WC, for HCHO adsorption through first-principles calculations. Due to the exposed three-coordinated W atoms (W3c) of the WC (0001) surface, HCHO molecules can be settled on the WC (0001) surface through newly formed OF–W3c and/or CF–W3c bonds, forming different adsorption configurations. When settled on the WC (0001) surface, the molecular configuration of the HCHO molecule and the corresponding CF–HF and CF–OF bond lengths would be greatly changed. Due to the enlarged CF–HF and CF–OF bond lengths, the adsorbed HCHO molecules tend to dissociate through two possible pathways; these are the two-step CF–HF bond scission or the one-step CF–OF bond scission. The former results in two H adatoms and a CO molecule chemisorbed to the surface and the latter produces an O adatom and a CH2 group on the surface. Further Cl-NEB calculations demonstrate that the pre-adsorbed O atom has little influence on the first CF–HF bond scission and the CF–OF bond scission, while promoting the second CF–HF bond scission. Considering the dissociative products, H and CH2 have the potential to couple into a CH3 group (or even a CH4 molecule) and two CH2 groups may couple into a C2H4 molecule. In the end, we propose that OH ions may couple with the dissociative products of HCHO, so an alkali solution could be used to post-process the WC (0001) surface to restore its surface active sites. These results demonstrated the potential of WC in HCHO sensing and abatement.

Graphical abstract: A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2018
Accepted
31 Aug 2018
First published
19 Sep 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 32481-32489

A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface

D. Wang, Y. Fan, Z. Sun, D. Han and L. Niu, RSC Adv., 2018, 8, 32481 DOI: 10.1039/C8RA04983A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements