Issue 32, 2018, Issue in Progress

Role of reactant concentration and identity of added cation in controlling emission from post-synthetically modified terbium incorporated zinc sulfide nanoparticles: an avenue for the detection of lead(ii) cations

Abstract

This work reports the photophysical properties of 1-thioglycerol capped hydrophilic terbium cation incorporated (doped) zinc sulfide [Zn(Tb)S] nanoparticles, which have been post-synthetically modified using Pb2+ [Zn(Tb)S/Pb] under ambient conditions with [Zn(Tb)S] : [Pb2+] = 1 : 10−5–1 : 10, essentially providing a scenario with low to heavy co-doping and ultimately the possibility of forming a material of different chemical identity. The effects of selected concentrations of [Zn(Tb)S] : [Mn+] = 1 : 1 and 1 : 10−2 have also been evaluated for the post-synthetic addition of Hg2+, Cd2+, Ca2+, Mg2+, Na+ and K+. The broad zinc sulfide nanoparticle and sharp Tb3+ emission have different dependence on the relative reactant concentration, with cation identity playing a significant role. The underlying photophysical processes have been rationalized based on the interplay among the (i) cation exchange, (ii) modification of the structural properties of the nanoparticles without necessarily exchanging the cations and (iii) emission enhancement of terbium dopants. In cases where Tb3+ emission is apparent, all the nanoparticles studied demonstrate an optical antenna effect, thus accessing a lower Tb3+ concentration regime compared to in bulk environments. The results presented provide an avenue for the detection of heavy metal ions in general and Pb2+ in particular, with a limit of detection that is at least in the range of sub-ppm, using either the broad ZnS or sharp Tb3+ emission, respectively. This strategy provides an avenue to combine (i) the extremely sensitive and easily accessible analytical technique of photoluminescence spectroscopy, (ii) post-synthetic modification reactions in semiconductor nanoparticles that can be performed with less experimental demand, (iii) time-gated measurement related to the longer luminescence lifetime of terbium cations and (iv) the simultaneous use of broad ZnS nanoparticle and sharp Tb3+ emission from the same assembly, helping eliminate false positive results.

Graphical abstract: Role of reactant concentration and identity of added cation in controlling emission from post-synthetically modified terbium incorporated zinc sulfide nanoparticles: an avenue for the detection of lead(ii) cations

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
28 Apr 2018
First published
16 May 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 18093-18108

Role of reactant concentration and identity of added cation in controlling emission from post-synthetically modified terbium incorporated zinc sulfide nanoparticles: an avenue for the detection of lead(II) cations

S. Rudra, G. H. Debnath and P. Mukherjee, RSC Adv., 2018, 8, 18093 DOI: 10.1039/C8RA02403K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements