Issue 18, 2018

Exploring and elaborating the novel excited state dynamical behavior of a bisflavonol system

Abstract

In this work, we investigate the dual hydrogen bonded 1,4-bis-(3-hydroxy-4-oxo-4H-chromen-2-yl)-benzene (bisflavonol) system in detail. Via optimizing stable structures and constructing potential energy curves, we confirm that two primary structures (i.e., anti-bisflavonol and syn-bisflavonol) can coexist in the S0 state. Calculating the reduced density gradient (RDG) versus sign(λ2)ρ and gradient isosurfaces, we confirm the formation of double hydrogen bonds for both anti-bisflavonol and syn-bisflavonol. Comparing the primary geometrical parameters involved in hydrogen bonds, we verify that the double intramolecular hydrogen bonds should be strengthened in the S1 state. In view of the photo-excitation process, we find that the charge redistributions around the hydrogen bonded moieties of both anti-bisflavonol and syn-bisflavonol facilitate the excited state intramolecular proton transfer (ESIPT) reaction. Given the reaction paths for the ESIPT process, the S0-state and S1-state potential energy surfaces (PESs) are constructed for both anti-bisflavonol and syn-bisflavonol along with two hydrogen bonds to reveal the overall excited state dynamical behavior. Searching for the transition state (TS) structure and calculating the intrinsic reaction coordinate (IRC) energetic profile, we confirm the ESIPT reaction. Combining it with Born–Oppenheimer molecular dynamics (BOMD) simulations, we study the ESIPT dynamical behaviors in detail. We present that only the single proton transfer process occurs in the S1 state in aprotic solvents, which makes up for the deficiency of previous experiments. The theoretical electronic spectra further confirm our attribution. This work not only illustrates that anti-bisflavonol and syn-bisflavonol coexisting in the S0-state can promote the respective ESIPT reaction, but also makes a new attribution to previous experiments.

Graphical abstract: Exploring and elaborating the novel excited state dynamical behavior of a bisflavonol system

Supplementary files

Article information

Article type
Research Article
Submitted
09 Jul 2018
Accepted
07 Aug 2018
First published
08 Aug 2018

Org. Chem. Front., 2018,5, 2710-2718

Exploring and elaborating the novel excited state dynamical behavior of a bisflavonol system

J. Zhao, H. Dong, H. Yang and Y. Zheng, Org. Chem. Front., 2018, 5, 2710 DOI: 10.1039/C8QO00688A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements