Jump to main content
Jump to site search


Synthesis of two novel [18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain

Author affiliations

Abstract

Two novel radiotracers, namely, N-(4-[18F]fluorobenzyl)-N-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([18F]5) and 2-(5-(4-[18F]fluorophenyl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide ([18F]6), were developed for positron emission tomography (PET) imaging of translocator protein (18 kDa) (TSPO) in ischemic brain in this study. The two radiotracers with a [18F]fluorobenzene ring were derived from the corresponding [18F]fluoroethyl tracers [18F]7 and [18F]8 which underwent [18F]defluoroethylation in vivo easily. [18F]5 or [18F]6 was synthesized by the radiofluorination of the spirocyclic iodonium ylide precursor 10 or 17 with [18F]F in 23 ± 10% (n = 7) or 56 ± 9% (n = 7) radiochemical yields (decay-corrected, based on [18F]F). [18F]5 and [18F]6 showed high in vitro binding affinities (Ki = 0.70 nM and 5.9 nM) for TSPO and moderate lipophilicities (log D = 2.9 and 3.4). Low uptake of radioactivity for both radiotracers was observed in mouse bones. Metabolite analysis showed that the in vivo stability of [18F]5 and [18F]6 was improved in comparison to the parent radiotracers [18F]7 and [18F]8. In particular, no radiolabelled metabolite of [18F]5 was found in the mouse brains at 60 min after the radiotracer injection. PET studies with [18F]5 on ischemic rat brains revealed a higher binding potential (BPND = 3.42) and maximum uptake ratio (4.49) between the ipsilateral and contralateral sides. Thus, [18F]5 was shown to be a useful PET radiotracer for visualizing TSPO in neuroinflammation models.

Graphical abstract: Synthesis of two novel [18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Jul 2018, accepted on 31 Aug 2018 and first published on 31 Aug 2018


Article type: Paper
DOI: 10.1039/C8OB01700J
Citation: Org. Biomol. Chem., 2018, Advance Article
  •   Request permissions

    Synthesis of two novel [18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain

    M. Fujinaga, K. Kumata, Y. Zhang, A. Hatori, T. Yamasaki, W. Mori, T. Ohkubo, L. Xie, N. Nengaki and M. Zhang, Org. Biomol. Chem., 2018, Advance Article , DOI: 10.1039/C8OB01700J

Search articles by author

Spotlight

Advertisements