Jump to main content
Jump to site search


Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries

Author affiliations

Abstract

The rational design and synthetic route to fabricate hybrid materials with desirable electrocatalytic functionalities remain critical but still challenging for sustainable energy devices. Here, we constructed a tungsten trioxide nano-lamellae chemically anchored with pyridinic-N-dominated doped CNT/graphene frameworks (W-NCG) via a general solution-based synthesis method. The detailed results indicated that this hybrid structure is composed of vacancy-defect abundant WO3 porous nanoflakes anchoring through or onto a 3D N-doped carbon matrix. After a facile post-annealing treatment, the W-NCG sample is utilized as a bi-functional catalyst for rechargeable lithium–oxygen batteries. The optimized sample with a large BET surface exhibits unprecedented ORR/OER activity in the cell, and satisfying specific capacity (∼7850 mA h g−1) and cycling stability. This excellent electrochemical performance can be ascribed to the pseudo 3D structure with sufficient microspace and good electrical conductivity, which facilitate the high dispersion of active components and effectivly relieve the formation of large/irreversible Li2O2. As such, this porous W-NCG framework is a prospective high-performance cathode material for Li–O2 batteries.

Graphical abstract: Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 May 2018, accepted on 21 Jul 2018 and first published on 23 Jul 2018


Article type: Paper
DOI: 10.1039/C8NR04026E
Citation: Nanoscale, 2018, Advance Article
  •   Request permissions

    Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries

    T. Liu, X. Zhang, T. Huang and A. Yu, Nanoscale, 2018, Advance Article , DOI: 10.1039/C8NR04026E

Search articles by author

Spotlight

Advertisements