Issue 17, 2018

The role of boron in the carrier transport improvement of CdSe-sensitized B,N,F-TiO2 nanotube solar cells: a synergistic strategy

Abstract

The synergistic effects of different engineering strategies, especially interface engineering, band structure engineering, and micro/nano engineering, can be exploited for the development of efficient photoanodes for quantum dot-sensitized solar cells (QDSSCs). Herein, we investigate the energy transfer mechanism and the charge carrier transport capacity of a set of photoanodes developed for a CdSe QDSSC. Boron, nitrogen and fluorine-tridoped TiO2 nanotube (BNF-TNT) membranes were obtained by anodization of titanium to self-organized TiO2 nanotube (TNT) layers, followed by a lift-off process. Then BNF-TNT membranes were adhered onto indium–tin oxide (ITO) conductive glass and sensitized by varying the load of CdSe quantum dots (BNF-Y-CdSe) using the SILAR method. The as-prepared electrode materials were characterized by FESEM, HR-TEM, DRS, XPS and Raman spectroscopy. The photochemical, photoelectrochemical, and semiconducting properties of the electrode materials were investigated by photopotential, photovoltammetry, photocurrent transient measurements, and Mott–Schottky analyses in 1.0 M Na2S. CdSe quantum dots (QDs) were homogeneously and intimately coated on BNF-TNT, which favored electron transport to the ITO substrate, and promoted a red-shift in the light harvesting of the composite toward the visible region (1.65 eV) from UV (2.75 eV). The highest photoresponse was obtained for BNF-TNT grown in 0.06 wt% H3BO3, and sensitized with CdSe QDs after five SILAR cycles. Boron doping in BNF-5-CdSe increased the photoconversion efficiency with respect to the CdSe-sensitized nanotubes without B-doping (NF-5-CdSe) by around 176% under one sun illumination (AM 1.5 G, 100 mW cm−2). The results showed that B-doping/sensitization synergism occurs by a Ti3+ states-to-CdSe QD electron transfer, which increases electron flow toward back contact. This allowed the enhancement of the electron lifetime, charge-collection efficiency and incident-to-electron conversion efficiency.

Graphical abstract: The role of boron in the carrier transport improvement of CdSe-sensitized B,N,F-TiO2 nanotube solar cells: a synergistic strategy

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2018
Accepted
22 Jul 2018
First published
23 Jul 2018

New J. Chem., 2018,42, 14481-14492

The role of boron in the carrier transport improvement of CdSe-sensitized B,N,F-TiO2 nanotube solar cells: a synergistic strategy

Andrés. F. Gualdrón-Reyes, A. M. Meléndez, M. A. Mejía-Escobar, F. Jaramillo and M. E. Niño-Gómez, New J. Chem., 2018, 42, 14481 DOI: 10.1039/C8NJ02716A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements