Issue 15, 2018

Synthesis and application of chitosan supported vanadium oxo in the synthesis of 1,4-dihydropyridines and 2,4,6-triarylpyridines via anomeric based oxidation

Abstract

Chitosan, as a biopolymer, exhibits a strong affinity for complexation with suitable metal ions. Thus, it has received increased attention for the preparation of stable bioorganic–inorganic hybrid heterogeneous catalysts. Herein, a novel chitosan based vanadium oxo (ChVO) catalyst was prepared and fully characterized by several techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), derivative thermal gravimetric (DTG), differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). The synthesized catalyst has been successfully used as a reusable catalyst in the synthesis of dihydropyridines and triarylpyridines.

Graphical abstract: Synthesis and application of chitosan supported vanadium oxo in the synthesis of 1,4-dihydropyridines and 2,4,6-triarylpyridines via anomeric based oxidation

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2018
Accepted
14 Jun 2018
First published
14 Jun 2018

New J. Chem., 2018,42, 12539-12548

Synthesis and application of chitosan supported vanadium oxo in the synthesis of 1,4-dihydropyridines and 2,4,6-triarylpyridines via anomeric based oxidation

M. Safaiee, B. Ebrahimghasri, M. A. Zolfigol, S. Baghery, A. Khoshnood and D. A. Alonso, New J. Chem., 2018, 42, 12539 DOI: 10.1039/C8NJ02062K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements