Jump to main content
Jump to site search


A novel electrocatalytic nanocomposite of reduced graphene oxide/silver nanocubes hybrid decorated imprinted polymer for ultra-trace sensing of Temozolomide

Abstract

A new nanocomposite of reduced graphene oxide/silver nanocubes hybrid decorated molecularly imprinted polymer at the surface of screen-printed carbon electrode was developed for the electroanalysis of an anticancerous drug, temozolomide, at ultra-trace level. For this, the hybrid of reduced graphene oxide/silver nanocubes was successfully obtained through the simultaneous reduction of Ag+ and graphene oxide via simple one-pot green synthesis. Among various shapes of nanomaterials used in imprinted polymer synthesis, silver nanocubes, as evident from SEM, TEM and, X-ray diffraction methods, have been found to render high surface to volume ratios and higher electrocatalytic activity. Herein, the synergistic electrocatalytic effect of reduced graphene oxide and silver nanocubes was utilized for decreasing the analyte oxidation overpotential, without any interfacial barrier in between the imprinted film and the electrode surface, owing to porous texture of coating. Consequently, approximately 3-fold differential pulse anodic stripping current and ~5-fold electron transfer rate kinetics were obtained on the reduced graphene oxide/silver nanocubes hybrid than the simple graphene oxide decorated sensor. The covalent Ag-S links, in between the imprinted film and the silver nanocubes decorated screen-printed carbon electrode, were crucial to impart higher stability to the coating of the film. A perfect linearity in the current-concentration profile was observed, in the range 1.09-144.21 ng mL-1, with the detection limits 0.16 (aqueous), 0.24 (blood plasma), 0.31(pharmaceutics), and 0.42 (urine) ng mL-1 (S/N=3). The proposed sensor was found to be useful in aqueous and real samples (human blood plasma, human urine, and pharmaceutics), without any matrix effect, cross-reactivity, and false-positives.

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Apr 2018, accepted on 02 Jul 2018 and first published on 10 Jul 2018


Article type: Paper
DOI: 10.1039/C8NJ01824C
Citation: New J. Chem., 2018, Accepted Manuscript
  •   Request permissions

    A novel electrocatalytic nanocomposite of reduced graphene oxide/silver nanocubes hybrid decorated imprinted polymer for ultra-trace sensing of Temozolomide

    P. K. Pathak, A. Kumar and B. B. Prasad, New J. Chem., 2018, Accepted Manuscript , DOI: 10.1039/C8NJ01824C

Search articles by author

Spotlight

Advertisements