Issue 12, 2018

Synthesis of Fe3O4 nanobead-functionalized 8-hydroxyquinoline sulfonic acid supported by an ion-imprinted biopolymer as a recognition site for Al3+ ions: estimation in human serum and water samples

Abstract

Herein, a novel “turn on” ion-imprinted chemosensor for highly sensitive and selective detection of Al3+ ions in complex matrices has been developed. The method was based on using chitosan (CHIT) biopolymer/magnetite nanoparticles (MGNPs) functionalized with 8-hydroxyquinoline sulfonic acid (8-HQS) in the presence of Al3+ ions to synthesize a magnetite ion non-imprinted biopolymer (MGINIBP) chemosensor. This newly developed chemosensor was synthesized via polymerization of CHIT with [3-(2,3-epoxypropoxy)-propyl]trimethoxysilane [EPPTMS] in the presence of magnetite nanoparticles, 8-HQS, and an Al3+ ion template. The template was then removed from the sensor using 0.5 M NaF to form new recognition sites for Al3+. The newly developed chemosensor was termed as a magnetite ion-imprinted biopolymer (MGIIBP). Exposure of Al3+ ions to the developed system embedded with 8-HQS resulted in the formation of a fluorescent polymer, and emission maximum was obtained at 500 nm after excitation at 365 nm. Furthermore, with the increasing Al3+ ion concentration, the fluorescence intensity increases within the range 0.081–9.0 × 10−8 M with a limit of detection (LOD) of 0.027 × 10−8 M. In addition, the synthesized chemosensor was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FTIR). The proposed MGIIBP sensor was successfully applied to the determination of Al3+ ions in water and human serum samples as model examples of complex natural matrix media.

Graphical abstract: Synthesis of Fe3O4 nanobead-functionalized 8-hydroxyquinoline sulfonic acid supported by an ion-imprinted biopolymer as a recognition site for Al3+ ions: estimation in human serum and water samples

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2018
Accepted
01 May 2018
First published
03 May 2018

New J. Chem., 2018,42, 9828-9836

Synthesis of Fe3O4 nanobead-functionalized 8-hydroxyquinoline sulfonic acid supported by an ion-imprinted biopolymer as a recognition site for Al3+ ions: estimation in human serum and water samples

M. M. El-Wekil, H. R. H. Ali, A. A. Marzouk and R. Ali, New J. Chem., 2018, 42, 9828 DOI: 10.1039/C8NJ01141A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements