Jump to main content
Jump to site search


Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes

Author affiliations

Abstract

Exosomes are nanoscale vesicles found in many bodily fluids which play a significant role in cell-to-cell signaling and contain biomolecules indicative of their cells of origin. Recently, microfluidic devices have provided the ability to efficiently capture exosomes based on specific membrane biomarkers, but releasing the captured exosomes intact and label-free for downstream characterization and experimentation remains a challenge. We present a herringbone-grooved microfluidic device which is covalently functionalized with antibodies against general and cancer exosome membrane biomarkers (CD9 and EpCAM) to isolate exosomes from small volumes of high-grade serous ovarian cancer (HGSOC) serum. Following capture, intact exosomes are released label-free using a low pH buffer and immediately neutralized downstream to ensure their stability. Characterization of captured and released exosomes was performed using fluorescence microscopy, nanoparticle tracking analysis, flow-cytometry, and SEM. Our results demonstrate the successful isolation of intact and label-free exosomes, indicate that the amount of both total and EpCAM+ exosomes increases with HGSOC disease progression, and demonstrate the downstream internalization of isolated exosomes by OVCAR8 cells. This device and approach can be utilized for a nearly limitless range of downstream exosome analytical and experimental techniques, both on and off-chip.

Graphical abstract: Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 Aug 2018, accepted on 29 Aug 2018 and first published on 04 Sep 2018


Article type: Paper
DOI: 10.1039/C8LC00834E
Citation: Lab Chip, 2018, Advance Article
  •   Request permissions

    Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes

    C. L. Hisey, K. D. P. Dorayappan, D. E. Cohn, K. Selvendiran and D. J. Hansford, Lab Chip, 2018, Advance Article , DOI: 10.1039/C8LC00834E

Search articles by author

Spotlight

Advertisements