Jump to main content
Jump to site search


An automated in vitro motility assay for high-throughput studies of molecular motors

Author affiliations

Abstract

Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices. These devices are based on in vitro motility assays that reconstitute molecular transport with purified motor proteins, requiring a deep understanding of the biophysical properties of motor proteins and thorough optimization to enable motility under varying environmental conditions. Until now, these assays have been prepared manually, severely limiting throughput. To overcome this limitation, we developed an in vitro motility assay where sample preparation, imaging and data evaluation are fully automated, enabling the processing of a 384-well plate within less than three hours. We demonstrate the automated assay for the analysis of peptide inhibitors for kinesin-1 at a wide range of concentrations, revealing that the IAK domain responsible for kinesin-1 auto-inhibition is both necessary and sufficient to decrease the affinity of the motor protein for microtubules, an aspect that was hidden in previous experiments due to scarcity of data.

Graphical abstract: An automated in vitro motility assay for high-throughput studies of molecular motors

Back to tab navigation

Publication details

The article was received on 29 May 2018, accepted on 31 Jul 2018 and first published on 11 Sep 2018


Article type: Paper
DOI: 10.1039/C8LC00547H
Citation: Lab Chip, 2018, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    An automated in vitro motility assay for high-throughput studies of molecular motors

    T. Korten, E. Tavkin, L. Scharrel, V. S. Kushwaha and S. Diez, Lab Chip, 2018, Advance Article , DOI: 10.1039/C8LC00547H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements