Issue 16, 2018

Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting

Abstract

Immunotherapies (IT) require induction, expansion, and maintenance of specific changes to a patient's immune cell repertoire which yield a therapeutic benefit. Recently, mechanistic understanding of these changes at the cellular level has revealed that IT results in complex phenotypic transitions in target cells, and that therapeutic effectiveness may be predicted by monitoring these transitions during therapy. However, monitoring will require unique tools that enable capture, manipulation, and profiling of rare immune cell populations. In this study, we introduce a method of automated and unsupervised separation and processing of rare immune cells, using high-force and multidimensional magnetic ratcheting (MR). We demonstrate capture of target immune cells using samples with up to 1 : 10 000 target cell to background cell ratios from input volumes as small as 25 microliters (i.e. a low volume and low cell frequency sample sparing assay interface). Cell capture is shown to achieve up to 90% capture efficiency and purity, and captured cell analysis is shown using both on-chip culture/activity assays and off-chip ejection and nucleic acid analysis. These results demonstrate that multi-directional magnetic ratcheting offers a unique separation system for dealing with blood cell samples that contain either rare cells or significantly small volumes, and the “sample sparing” capability leads to an expanded spectrum of parameters that can be measured. These tools will be paramount to advancing techniques for immune monitoring under conditions in which both the sample volume and number of antigen-specific target cells are often exceedingly small, including during IT and treatment of allergy, asthma, autoimmunity, immunodeficiency, cell based therapy, transplantation, and infection.

Graphical abstract: Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2018
Accepted
13 Jul 2018
First published
24 Jul 2018

Lab Chip, 2018,18, 2396-2409

Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting

C. Murray, H. Miwa, M. Dhar, D. E. Park, E. Pao, J. Martinez, S. Kaanumale, E. Loghin, J. Graf, K. Rhaddassi, W. W. Kwok, D. Hafler, C. Puleo and D. Di Carlo, Lab Chip, 2018, 18, 2396 DOI: 10.1039/C8LC00518D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements