Jump to main content
Jump to site search


Quantitative phase microscopy of red blood cells during planar trapping and propulsion

Author affiliations

Abstract

Red blood cells (RBCs) have the ability to undergo morphological deformations during microcirculation, such as changes in surface area, volume and sphericity. Optical waveguide trapping is suitable for trapping, propelling and deforming large cell populations along the length of the waveguide. Bright field microscopy employed with waveguide trapping does not provide quantitative information about structural changes. Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation. By using interference microscopy, time-lapsed interferometric images of trapped RBCs were recorded in real-time and subsequently utilized to reconstruct optical phase maps. Quantification of the phase differences before and after trapping enabled study of the mechanical effects during planar trapping. During planar trapping, a decrease in the maximum phase values, an increase in the surface area and a decrease in the volume and sphericity of RBCs were observed. QPM was used to analyze the phase values for two specific regions within RBCs: the annular rim and the central donut. The phase value of the annular rim decreases whereas it increases for the central donut during planar trapping. These changes correspond to a redistribution of cytosol inside the RBC during planar trapping and transportation.

Graphical abstract: Quantitative phase microscopy of red blood cells during planar trapping and propulsion

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Apr 2018, accepted on 02 Jul 2018 and first published on 22 Aug 2018


Article type: Paper
DOI: 10.1039/C8LC00356D
Citation: Lab Chip, 2018, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Quantitative phase microscopy of red blood cells during planar trapping and propulsion

    A. Ahmad, V. Dubey, V. R. Singh, J. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So and B. S. Ahluwalia, Lab Chip, 2018, Advance Article , DOI: 10.1039/C8LC00356D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements