Jump to main content
Jump to site search


A comparative study of sheathing devices to increase robustness in inductively coupled plasma optical emission spectrometry via a nitrogen flow

Author affiliations

Abstract

Five different glass sheathing devices were used to introduce 20 mL min−1 N2 sheathing gas around the effluent from the spray chamber to see the effect of their dimensions on plasma robustness as measured using the Mg II 280.270 nm/Mg I 285.213 nm emission signal ratio in inductively coupled plasma (ICP) optical emission spectrometry (OES). A clear relationship between device dimensions and the plasma robustness profile along the ICP central channel was observed. With an aerosol inlet having an inner diameter of 1.0 cm in the sheathing device, mixing of N2 with the aerosol was minimised and the resulting sheath increased robustness, the higher thermal conductivity of N2 versus Ar likely improving energy transfer between the bulk plasma and the central channel. The configuration of the outlet is also important, as any bottleneck favours mixing of N2 with the aerosol, which in turn cools the plasma, thereby shifting the region of maximum robustness to higher above the load coil. Regardless of device dimensions, plasma robustness was always better with N2 sheathing gas. An increased ion-to-atom emission signal ratio also resulted for other elements than Mg. The presence of N2 also seems to affect excitation mechanisms, such as charge transfer between NO+ and Cd or Ni, which appears to take place at higher observation height, after N2 has had enough time to diffuse into the central channel.

Graphical abstract: A comparative study of sheathing devices to increase robustness in inductively coupled plasma optical emission spectrometry via a nitrogen flow

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Apr 2018, accepted on 22 May 2018 and first published on 22 May 2018


Article type: Technical Note
DOI: 10.1039/C8JA00118A
Citation: J. Anal. At. Spectrom., 2018, Advance Article
  •   Request permissions

    A comparative study of sheathing devices to increase robustness in inductively coupled plasma optical emission spectrometry via a nitrogen flow

    G. L. Scheffler, D. Pozebon and D. Beauchemin, J. Anal. At. Spectrom., 2018, Advance Article , DOI: 10.1039/C8JA00118A

Search articles by author

Spotlight

Advertisements