Issue 6, 2018

Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid

Abstract

Direct conversion of carbon dioxide to formic acid at thermodynamic equilibrium is an advantage of enzymatic catalysis, hardly replicated by synthetic analogs, but of high priority for carbon-neutral energy schemes. The bio-mimetic potential of totally inorganic Pd@TiO2 nanoparticles is envisioned herein in combination with Single Walled Carbon NanoHorns (SWCNHs). The high surface nano-carbon entanglement templates a wide distribution of “hard-soft” bimetallic sites where the small Pd nanoparticles (1.5 nm) are shielded within the TiO2 phase (Pd@TiO2), while being electrically wired to the electrode by the nanocarbon support. This hybrid electrocatalyst activates CO2 reduction to formic acid at near zero overpotential in the aqueous phase (onset potential at E < −0.05 V vs. RHE, pH = 7.4), while being able to evolve hydrogen via sequential formic acid dehydrogenation. The net result hints at a unique CO2 “circular catalysis” where formic acid versus H2 selectivity is addressable by flow-reactor technology.

Graphical abstract: Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2017
Accepted
04 Apr 2018
First published
06 Apr 2018

Energy Environ. Sci., 2018,11, 1571-1580

Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid

M. Melchionna, M. V. Bracamonte, A. Giuliani, L. Nasi, T. Montini, C. Tavagnacco, M. Bonchio, P. Fornasiero and M. Prato, Energy Environ. Sci., 2018, 11, 1571 DOI: 10.1039/C7EE03361C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements