Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

Author affiliations

Abstract

Graphene, despite being the best known strong and electrical/thermal conductive material, has found limited success in practical applications, mostly due to difficulties in the formation of desired large-scale highly organized structures. Our discovery of a liquid crystalline phase formation in graphene oxide dispersion has enabled a broad spectrum of highly aligned graphene-based structures, including films, fibers, membranes, and mesoscale structures. In this review, the current understanding of the structure–property relationship of graphene oxide liquid crystals (GOLCs) is overviewed. Various synthetic methods and parameters that can be optimized for GOLC phase formation are highlighted. Along with the results from different characterization methods for the identification of the GOLC phases, the typical characteristics of different types of GOLC phases introduced so far, including nematic, lamellar and chiral phases, are carefully discussed. Finally, various interesting applications of GOLCs are outlined together with the future prospects for their further developments.

Graphical abstract: Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

Back to tab navigation

Publication details

The article was received on 16 Apr 2018 and first published on 16 Jul 2018


Article type: Review Article
DOI: 10.1039/C8CS00299A
Citation: Chem. Soc. Rev., 2018,47, 6013-6045
  •   Request permissions

    Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials

    S. Padmajan Sasikala, J. Lim, I. H. Kim, H. J. Jung, T. Yun, T. H. Han and S. O. Kim, Chem. Soc. Rev., 2018, 47, 6013
    DOI: 10.1039/C8CS00299A

Search articles by author

Spotlight

Advertisements