Issue 38, 2018

Tuning the photoreactivity of Z-hexatriene photoswitches by substituents – a non-adiabatic molecular dynamics study

Abstract

To understand how substituents can be used to increase the quantum yield of photochemical electrocyclic ring-closing of the Z-hexa-1,3,5-triene (HT) photoswitch forming cyclohexadiene (CHD), we investigate the S1 photo dynamics of HT and its derivatives 2,5-dimethyl-HT (DMHT), 2-isopropyl-5-methyl-HT (2,5-IMHT), 1-isopropyl-4-methyl-HT (1,4-IMHT), and 2,5-diisopropyl-HT (DIHT) using time-dependent density functional theory surface hopping dynamics. We report detailed photoproduct distributions, formation mechanisms, branching ratios, and wavelength-dependent product quantum yields. Most products have been confirmed experimentally and include all-trans HT derivatives, cyclopropanes, cyclobutenes, cyclopentene, cyclohexadienes, and bicyclic compounds. Regarding CHD formation, we find that for the 2,5-substituted derivatives DMHT, 2,5-IMHT, and DIHT, the branching ratios increase with increasing size of the substituents. In contrast the branching ratios of the E/Z-isomerization decrease with increasing size of the substituents. Due to steric interactions, increasing the size of the substituents increases the amount of gZg rotamers in the ground state, which are prone to CHD formation and have lower E/Z-isomerization probability. Furthermore, we find [1,4], [1,5], and [1,6]-sigmatropic hydrogen shift reactions occurring at large percentages (5% to 15%); for sterical reasons these reactions stem from tZg conformers. DIHT shows the lowest percentage of side product formation among the 2,5-substituted molecules and highest CHD branching ratio; its CHD quantum yield can be increased up to more than 64%, by excitation of DIHT on the red tail of its absorption spectrum, whereas the Z/E-isomerization is reduced below 5% and side reactions practically vanish. This makes DIHT the best candidate for applications in molecular switches.

Graphical abstract: Tuning the photoreactivity of Z-hexatriene photoswitches by substituents – a non-adiabatic molecular dynamics study

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2018
Accepted
13 Sep 2018
First published
13 Sep 2018

Phys. Chem. Chem. Phys., 2018,20, 24807-24820

Tuning the photoreactivity of Z-hexatriene photoswitches by substituents – a non-adiabatic molecular dynamics study

E. Tapavicza, T. Thompson, K. Redd and D. Kim, Phys. Chem. Chem. Phys., 2018, 20, 24807 DOI: 10.1039/C8CP05181J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements