Jump to main content
Jump to site search


Atomistic reverse nonequilibrium molecular dynamics simulation of the viscosity of ionic liquid 1-n-butyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N]

Author affiliations

Abstract

The shear viscosity of room-temperature ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N] is calculated over a temperature range 298–353 K, using the reverse nonequilibrium molecular dynamics simulation technique. The results of this work show that while the use of equilibrium molecular dynamics simulation techniques might be inefficient for viscosity calculations of ILs, the reverse nonequilibrium molecular dynamics technique is an efficient tool for this purpose. Our findings indicate that the shear rate for crossover from the Newtonian plateau to the shear thinning regime, corresponds to the relaxation time for the slowest microscopic scale motions, i.e., exchange of counterions in an ion's solvation shell (ion-pair relaxation time). The closeness of the time scales and activation energies for zero-shear-rate viscosities to the relaxation times and the corresponding activation energies for ion-pair formation/rupture, connects macroscopic dynamic properties with local atomic-level motions of the IL. The calculated viscosity coefficients and relaxation times for reorientations of the cation and anion as well as their corresponding activation energies are in very good agreement with experimental data.

Graphical abstract: Atomistic reverse nonequilibrium molecular dynamics simulation of the viscosity of ionic liquid 1-n-butyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N]

Back to tab navigation

Publication details

The article was received on 14 Apr 2018, accepted on 02 Aug 2018 and first published on 02 Aug 2018


Article type: Paper
DOI: 10.1039/C8CP02393J
Citation: Phys. Chem. Chem. Phys., 2018, Advance Article
  •   Request permissions

    Atomistic reverse nonequilibrium molecular dynamics simulation of the viscosity of ionic liquid 1-n-butyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N]

    R. Safinejad, N. Mehdipour and H. Eslami, Phys. Chem. Chem. Phys., 2018, Advance Article , DOI: 10.1039/C8CP02393J

Search articles by author

Spotlight

Advertisements