Jump to main content
Jump to site search

Issue 23, 2018
Previous Article Next Article

Effective interaction potentials for model amphiphilic surfactants adsorbed at fluid–fluid interfaces

Author affiliations

Abstract

Computer simulations are a useful tool to explore the effects of interactions and structure of surfactants on interfacial microstructure and properties. Starting with “molecular-level”, three-dimensional reference systems of short amphiphilic surfactants at fluid–fluid interfaces, we here derive effective interaction potentials for the corresponding two-dimensional systems of structureless particles confined to the interface plane. These reference systems are comprised of two immiscible mono atomic fluids (water- and oil-like particles) and nonionic linear amphiphilic surfactants. Our results show that coarse grained interaction potentials are only weakly dependent on surface concentration but their behavior is strongly dependent on surfactant interactions. The coarse grained system preserves the in-plane surfactant center-of-mass pair correlation function at the interface and the results of surface pressure-area isotherms are in a good agreement. This approach can be extended straightforwardly to other types of surfactants at both fluid–fluid and fluid–gas interfaces providing us with an effective pairwise interaction potential for the surfactant monolayer. These effective interactions can be used to explore large-scale self-assembly within the monolayer especially at low surface concentrations where reference simulations are extremely time-consuming.

Graphical abstract: Effective interaction potentials for model amphiphilic surfactants adsorbed at fluid–fluid interfaces

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Mar 2018, accepted on 24 May 2018 and first published on 29 May 2018


Article type: Paper
DOI: 10.1039/C8CP01632A
Citation: Phys. Chem. Chem. Phys., 2018,20, 16238-16246
  •   Request permissions

    Effective interaction potentials for model amphiphilic surfactants adsorbed at fluid–fluid interfaces

    A. Moghimikheirabadi, L. M. Sagis and P. Ilg, Phys. Chem. Chem. Phys., 2018, 20, 16238
    DOI: 10.1039/C8CP01632A

Search articles by author

Spotlight

Advertisements