Issue 25, 2018

Spray drying of zeolitic imidazolate frameworks: investigation of crystal formation and properties

Abstract

High-quality zeolite imidazole frameworks (ZIF-8, ZIF-67, and bimetallic Zn/Co-ZIF) were synthesized using the spray-drying technique and the mechanism of crystal growth during the whole process is discussed. It is also demonstrated that the crystallization mechanism for N-donor containing ditopic imidazolate (IM) ligands forming ZIF structures is divergent from MOF formation applying carboxylate ligands, and their formation using the spray dry method occurs via a unique mechanism. An intermediate amorphous phase was obtained after spray drying the feed solution, and the crystallographic ZIF structure was obtained during immersion in a solvent. Several characterization techniques, such as FTIR, XRD, SEM, porosity analysis, elemental analysis etc., were applied to examine the characteristic properties of materials, including, intermediate compounds and final products. The results proved that the spray drying procedure is a facile, continuous and effective synthetic route to produce MOFs (ZIFs) in higher quantities with high-quality properties such as high porosity, a large surface area, more active catalyst sites, etc. applying a minimum amount of time and energy which is unusual in common synthesis methods of MOFs.

Graphical abstract: Spray drying of zeolitic imidazolate frameworks: investigation of crystal formation and properties

Supplementary files

Article information

Article type
Paper
Submitted
13 Mar 2018
Accepted
15 May 2018
First published
16 May 2018

CrystEngComm, 2018,20, 3601-3608

Spray drying of zeolitic imidazolate frameworks: investigation of crystal formation and properties

S. Chaemchuen, K. Zhou, B. Mousavi, M. Ghadamyari, P. M. Heynderickx, S. Zhuiykov, M. S. Yusubov and F. Verpoort, CrystEngComm, 2018, 20, 3601 DOI: 10.1039/C8CE00392K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements