Jump to main content
Jump to site search

Issue 65, 2018
Previous Article Next Article

Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry

Author affiliations

Abstract

This study focuses on the structural rearrangements and the photoluminescent behavior of pyrolytically derived carbon dots when subjected to a series of cyclic voltammetry sweeps. Although the electrical signals involved are not pronounced, multiple electrochemical cycling results in a progressive suppression of the photoluminescence, so that after 42 sweeps the intensity is reduced by one order of magnitude. At the same time, the fluorescence component stemming from the organic fluorophores is blue-shifted, while the contribution of the carbogenic cores is red-shifted. XPS and FTIR spectra reveal that the voltammetric field induces an extensive formation of C–O and C[double bond, length as m-dash]O at the expense of the C[double bond, length as m-dash]C bonds. Our findings indicate a close relationship between the electrochemical response and the structure of C-dots and, thus, have direct implications on the development of C-dot based electroluminescent materials, electrochemical sensors and solar cells.

Graphical abstract: Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 May 2018, accepted on 19 Jul 2018 and first published on 21 Jul 2018


Article type: Communication
DOI: 10.1039/C8CC03617A
Citation: Chem. Commun., 2018,54, 9067-9070
  •   Request permissions

    Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry

    Y. Tian, L. Li, X. Guo, A. Wójtowicz, L. Estevez, M. J. Krysmann and A. Kelarakis, Chem. Commun., 2018, 54, 9067
    DOI: 10.1039/C8CC03617A

Search articles by author

Spotlight

Advertisements