Issue 8, 2018

Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers

Abstract

Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m−1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.

Graphical abstract: Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2018
Accepted
26 Jun 2018
First published
09 Jul 2018

Biomater. Sci., 2018,6, 2219-2229

Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers

I. V. Vidiasheva, A. A. Abalymov, M. A. Kurochkin, O. A. Mayorova, M. V. Lomova, S. V. German, D. N. Khalenkow, M. N. Zharkov, D. A. Gorin, A. G. Skirtach, V. V. Tuchin and G. B. Sukhorukov, Biomater. Sci., 2018, 6, 2219 DOI: 10.1039/C8BM00479J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements