Jump to main content
Jump to site search


Adsorption efficiency enhancing of electrospun polycaprolactone nanofibers towards acidic polar drugs through the incorporation of a composite of graphene oxide nanosheets and Al30 polyoxocations: a comparative study

Author affiliations

Abstract

The main objective of this study focuses on exploration of the feasibility of Al30 polyoxocations for preparation of a novel sorbent material for a solid-phase extraction (SPE) method by selective adsorption and extraction of a class of compounds considering the type of interactions involved in the adsorption process. Accordingly, first Al30 polyoxocations were synthesized and their composite was prepared with graphene oxide (GO) nanosheets as a suitable substrate to be introduced as a SPE sorbent material. Then, the prepared composite was incorporated into polycaprolactone (PCL) nanofibers via electrospinning to present an alternative sorbent for SPE-based on a GO/Al30 nanocomposite (GO/Al30 NC) creating no need for filtering or centrifuging steps. Intercalation of Al30 polyoxocations into the GO layers and the incorporation of GO/Al30 NC into PCL nanofibers was successfully confirmed through FE-SEM, TEM, EDX, XRD, BET, TGA, IR spectroscopy, and zeta potential determination. For investigating the types of probable interactions involved in the adsorption process of different compounds on the proposed sorbents, four statin drugs, cholesterol-lowering agents with various polarity and ionization properties, were selected as model analytes. Factors affecting the extraction efficiency of dispersive SPE and immersed SPE methods using GO/Al30 NC and GO/Al30 NC-PCL nanofibers, respectively, were investigated and optimized. Under optimal conditions, acceptable analytical figures of merit were obtained for both SPE methods. A comparison of extraction efficiencies of the target drugs by the two proposed sorbents, as well as GO nanosheets and PCL nanofibers, was accomplished to study the types of interactions as well as the adsorption mechanism. The results revealed that GO/Al30 NC, having many polar and anion exchange sites caused by Al30 polyoxocations, is a good selective sorbent for acidic polar compounds which their extraction by nonpolar sorbents is not desirable. Additionally, GO/Al30 NC-PCL nanofibers exhibited extraction capability for a wide range of compounds from acidic polar to nonpolar and nonionizable ones.

Graphical abstract: Adsorption efficiency enhancing of electrospun polycaprolactone nanofibers towards acidic polar drugs through the incorporation of a composite of graphene oxide nanosheets and Al30 polyoxocations: a comparative study

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Jun 2018, accepted on 21 Aug 2018 and first published on 04 Sep 2018


Article type: Paper
DOI: 10.1039/C8AN01066H
Citation: Analyst, 2018, Advance Article
  •   Request permissions

    Adsorption efficiency enhancing of electrospun polycaprolactone nanofibers towards acidic polar drugs through the incorporation of a composite of graphene oxide nanosheets and Al30 polyoxocations: a comparative study

    E. Tahmasebi, Analyst, 2018, Advance Article , DOI: 10.1039/C8AN01066H

Search articles by author

Spotlight

Advertisements