Issue 10, 2017

Terbium-induced phase transitions and weak ferromagnetism in multiferroic bismuth ferrite ceramics

Abstract

Partial substitution of isovalent rare-earth ions for bismuth is one of the most effective ways to develop room temperature BiFeO3-based multiferroic materials with high resistivity and strong magnetoelectric coupling. However, their structures and properties are composition and processing sensitive, with the underlying mechanisms still far from being completely understood. Here we report on the structural, thermal and magnetic properties of polycrystalline Bi1−xTbxFeO3 (0 ≤ x ≤ 0.30) dense ceramics prepared by spark plasma sintering (SPS). The X-ray diffraction study reveals that increasing terbium content induces a structural transformation from the parental rhombohedral (R3c) polar phase to an orthorhombic (Pnma) non-polar phase at x ≈ 0.20–0.25. Complementary Raman and energy-loss near-edge structure (ELNES) spectroscopy studies indicate that the transition proceeds by the progressive loss of Bi–O hybridization. Suppression of the long-range ferroelectric ordering upon Tb substitution and loss of ferroelectricity at x ≥ 0.25 was also confirmed by differential scanning calorimetry. High-sensitivity magnetic measurements show that the introduction of a small amount of Tb3+ ions at the A-sites of the perovskite structure gives rise to the occurrence of spontaneous magnetization at room temperature. The reduced degree of Fe 3d–4p orbital mixing and the weaker Fe 3d–O 2p hybridization, revealed by ELNES and X-ray near-edge absorption fine structure (NEXAFS) analyses, suggest that the substitution-induced changes in the electronic structure are responsible for the enhanced magnetization in Tb-doped BiFeO3. Among the biphasic (R3c + Pnma) compositions with ferroelectric order, the Bi0.8Tb0.2FeO3 compound shows the highest value of remanent magnetization (Mr ≈ 0.26 emu g−1), which makes this material a potential candidate for magnetoelectric applications.

Graphical abstract: Terbium-induced phase transitions and weak ferromagnetism in multiferroic bismuth ferrite ceramics

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2016
Accepted
16 Feb 2017
First published
17 Feb 2017

J. Mater. Chem. C, 2017,5, 2669-2685

Terbium-induced phase transitions and weak ferromagnetism in multiferroic bismuth ferrite ceramics

V. Koval, I. Skorvanek, J. Durisin, G. Viola, A. Kovalcikova, P. Svec, K. Saksl and H. Yan, J. Mater. Chem. C, 2017, 5, 2669 DOI: 10.1039/C6TC04060H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements