Issue 17, 2017

Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks

Abstract

The influence of pore texture and nitrogen species of the carbon support for the Fischer–Tropsch synthesis was investigated using well-defined catalysts derived from metal–organic frameworks (MOFs). Two typical MOFs were employed in the carbonization process to prepare the target catalysts, i.e. nitrogen-rich ZIF-67 and nitrogen-free Co-MOF-74. The Co-MOF-74-derived nanocomposite (Co@C) showed a carbon monoxide (CO) conversion of 30%, whereas the ZIF-67-derived nanocomposite (Co@NC) exhibited a CO conversion of 10%. The nitrogen-free Co@C composite showed 65% selectivity for long-chain hydrocarbons (C5+) and 10% selectivity for short-chain hydrocarbons (C2–C4) after 100 h on stream; on the other hand, the Co@NC composite showed 31% selectivity for C5+ products and 37% selectivity for short-chain hydrocarbons (C2–C4) after 100 h on stream. The excellent CO conversion was attributed to the large pore size of the carbon support, which facilitates the diffusion of the hydrocarbons. The high C2–C4 selectivity originates from the influence of nitrogen species in the carbon support. This study is expected to open a new avenue for the design of new catalysts for the Fischer–Tropsch synthesis with high activity and superior selectivity via choosing suitable MOFs precursors.

Graphical abstract: Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2017
Accepted
28 Mar 2017
First published
28 Mar 2017

J. Mater. Chem. A, 2017,5, 8081-8086

Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks

B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma and R. Zou, J. Mater. Chem. A, 2017, 5, 8081 DOI: 10.1039/C7TA02128C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements