Issue 8, 2017

Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications

Abstract

Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN) nanosheets are fabricated using the surfactant sodium cholate in aqueous media and are explored towards the electrochemical reduction of oxygen (oxygen reduction reaction) within acidic media for the first time. Large quantifiable voltammetric signatures are observed at significantly reduced potentials compared to traditional graphitic-based electrodes indicating 2D-hBN's possible electrocatalytic activity towards the oxygen reduction reaction, therefore having the potential as a useful electrode platform within fuel cell technology. We also demonstrate, for the first time, that surfactant-exfoliated 2D-hBN is an effective electrochemical supercapacitor material with a specific capacitance value of up to 1745 F g−1. A full analysis of the electrochemical properties of 2D-hBN is performed, including the application of a novel capacitive circuit applied to galvanostatic charge/discharge analysis, which provides an unambiguous analysis of the capacitance of the 2D-hBN. Furthermore, a diverse range of methods are introduced and utilised to calculate the specific capacitance, a substantially overlooked and misinterpreted parameter within the literature allowing standardisation in the academic literature to be achieved. In both examples, we demonstrate through control experiments in the form of surfactant modified graphite electrodes, sodium cholate is the major contributing factor to the aforementioned electrocatalytic and capacitive behaviour, which has yet to be reported.

Graphical abstract: Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2016
Accepted
18 Jan 2017
First published
02 Feb 2017
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2017,5, 4103-4113

Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications

A. F. Khan, M. P. Down, G. C. Smith, C. W. Foster and C. E. Banks, J. Mater. Chem. A, 2017, 5, 4103 DOI: 10.1039/C6TA09999H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements