Jump to main content
Jump to site search

Issue 1, 2017
Previous Article Next Article

Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets

Author affiliations

Abstract

The application of Li7La3Zr2O12 as a Li+ solid electrolyte is hampered by the lack of a reliable procedure to obtain and densify the fast-ion conducting cubic garnet polymorph. Dense cubic Li7La3Zr2O12-type phases are typically formed as a result of Al-incorporation in an unreliable reaction with the alumina crucible at elevated temperatures of up to 1230 °C. High Al3+-incorporation levels are also believed to hinder the three-dimensional movement of Li+ in these materials. Here, a new, facile hybrid sol–gel solid-state approach has been developed in order to accomplish reliable and controllable synthesis of these phases with low Al-incorporation levels. In this procedure, sol–gel processed solid precursors of Li7La3Zr2O12 and Al2O3 nanosheets are simply mixed using a pestle and mortar and allowed to react at 1100 °C for 3 h to produce dense cubic phases. Fast-ion conducting Al-doped Li7La3Zr2O12 phases with the lowest reported Al3+-content (∼0.12 mol per formula unit), total conductivities of ∼3 × 10−4 S cm−1, bulk conductivities up to 0.6 mS and ion conduction activation energies as low as 0.27 eV, have been successfully achieved. The ease of lithium diffusion in these materials is attributed to the formation of dense cubic phases with low Al3+ dopant ratios. This approach is applicable to Li7−xLa3Zr2−xTaxO12 phases and opens up a new synthetic avenue to Li7La3Zr2O12-type materials with greater control over resulting characteristics for energy storage applications.

Graphical abstract: Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Aug 2016, accepted on 20 Nov 2016 and first published on 21 Nov 2016


Article type: Paper
DOI: 10.1039/C6TA06961D
Citation: J. Mater. Chem. A, 2017,5, 319-329
  • Open access: Creative Commons BY license
  •   Request permissions

    Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets

    H. El-Shinawi, G. W. Paterson, D. A. MacLaren, E. J. Cussen and S. A. Corr, J. Mater. Chem. A, 2017, 5, 319
    DOI: 10.1039/C6TA06961D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements