Jump to main content
Jump to site search

Issue 2, 2017
Previous Article Next Article

Exchange-bias quantum tunnelling in a CO2-based Dy4-single molecule magnet

Author affiliations

Abstract

Carbamate formation in green-plants through the RuBisCO enzyme continuously plays a pivotal role in the conversion of CO2 from the atmosphere into biomass. With this in mind, carbamate formation from CO2 by a lanthanide source in the presence of a secondary amine is herein explored leading to a lanthanide–carbamate cage with the formula [Dy4(O2CNiPr2)12]. Magnetic studies show slow relaxation leading to the observation of hysteresis loops; the tetranuclear cage being a single molecule magnet. Detailed interpretation of the data reveals: (i) the presence of two different exchange interactions, ferromagnetic and antiferromagnetic and (ii) the observation of exchange-bias quantum tunnelling with two distinct sets of loops, attributable to ferromagnetic interactions between dysprosium ions at longer distances and antiferromagnetic exchange between dysprosium ions at shorter distances. The results clearly demonstrate that the [Dy4(O2CNiPr2)12] cage acts as a quantum magnet which in turn could be at the heart of hybrid spintronic devices after having implemented CO2 as a feedstock.

Graphical abstract: Exchange-bias quantum tunnelling in a CO2-based Dy4-single molecule magnet

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 19 Jul 2016, accepted on 22 Sep 2016 and first published on 22 Sep 2016


Article type: Edge Article
DOI: 10.1039/C6SC03184F
Citation: Chem. Sci., 2017,8, 1178-1185
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Exchange-bias quantum tunnelling in a CO2-based Dy4-single molecule magnet

    E. M. Pineda, Y. Lan, O. Fuhr, W. Wernsdorfer and M. Ruben, Chem. Sci., 2017, 8, 1178
    DOI: 10.1039/C6SC03184F

Search articles by author