Jump to main content
Jump to site search

Issue 68, 2017, Issue in Progress
Previous Article Next Article

Molecular fractionation of a soil fulvic acid (FA) and competitive sorption of trace metals (Cu, Zn, Cd, Pb) in hematite–solution systems: effect of the FA-to-mineral ratio

Author affiliations

Abstract

Understanding of the interactions occurring between fulvic acids (FAs) and trace metals in mineral–solution systems is a major issue for cycles of organic matter and micro-pollutants in surface media. Batch experiments and molecular-scale investigations were conducted to address the mechanisms regulating the molecular fractionation of a terrestrial FA and the competition between Cu, Zn, Cd and Pb during sorption onto hematite, a mineral ubiquitous in soils, with a focus on effects of FA-to-mineral ratio (r). A main result is that r controlled both the identity of the FA molecules preferentially sorbed on hematite and the sequence of the FA-promoted sorption of metals, at acidic pH. Data at moderate r evidenced that the sorption degree of a FA molecule increased with molecular acidity, supporting surface complex formation at hematite sites involving preferentially the most acidic and oxygenated FA molecules. FA-promoted sorption of strong Lewis acids such as Pb and Cu was favored (relative to Cd or Zn) by sorbed FA bearing multiple oxygenated functionalities. In contrast, preferential uptake of condensed aromatics and low oxygenated aliphatics/not-condensed aromatics prevailed at high r. A reduced FA-promoted sorption of Cu, which contrasted with an increased FA-promoted sorption of Cd, was observed too. Complex interactions must be invoked (competitive effects, hydrophobic forces, hydrogen bonding) to explain the striking results obtained in highly-competitive FA-concentrated systems. Our data highlight that (coupled) retention/mobilization of reactive organic molecules and of toxic metals like Cd and Pb is a function of the FA-to-metal oxide ratio of soils.

Graphical abstract: Molecular fractionation of a soil fulvic acid (FA) and competitive sorption of trace metals (Cu, Zn, Cd, Pb) in hematite–solution systems: effect of the FA-to-mineral ratio

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Jun 2017, accepted on 31 Aug 2017 and first published on 05 Sep 2017


Article type: Paper
DOI: 10.1039/C7RA06838G
Citation: RSC Adv., 2017,7, 43090-43103
  • Open access: Creative Commons BY license
  •   Request permissions

    Molecular fractionation of a soil fulvic acid (FA) and competitive sorption of trace metals (Cu, Zn, Cd, Pb) in hematite–solution systems: effect of the FA-to-mineral ratio

    G. Fleury, M. Del Nero and R. Barillon, RSC Adv., 2017, 7, 43090
    DOI: 10.1039/C7RA06838G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements