Jump to main content
Jump to site search

Issue 26, 2017, Issue in Progress
Previous Article Next Article

Predicted structural evolution and detailed insight into configuration correlation, mechanical properties of silicon–boron binary compounds

Author affiliations

Abstract

The crystal structures, phase stability, mechanical and electronic structures of silicon–boron binaries have been investigated systematically using first-principles of pseudopotential calculations. The calculated formation enthalpies of α-SiB3, SiB6 and SiBn follow the sequence: ΔHf (α-SiB3) > ΔHf (SiB6) > ΔHf (SiBn), which is in good agreement with the previous experimental results. Monoclinic SiB6 with P21/m symmetry and hexagonal SiB36 with a B80 unit (a ring linked by diametrically located 2 × B28, 2 × B12) are suggested as the more energetically and mechanically favorable phases by our calculations. The predicted bulk modulus of Si–B binaries is between 120 and 180 GPa, while there is a dramatic drop for two kinds of α-SiB3 in the shear modulus from 130.3 GPa (SiB3) to 71.1 GPa (SiB4). We infer that the additional centered boron atoms, located long the spatial diagonal in SiB4, is responsible for the weakness along this direction. In addition to β-SiB3, the new proposed P21/m-SiB6 and R3m-SiB6 is found to be semiconducting with 0.41 eV indirect and 1.654 eV direct band gap, respectively. There is no band gap provided by band structures of SiB4 and SiB36, as well as their DOS values are quite large at Fermi level, indicating they are energetically unstable under 0 K and GPa.

Graphical abstract: Predicted structural evolution and detailed insight into configuration correlation, mechanical properties of silicon–boron binary compounds

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Jan 2017, accepted on 06 Mar 2017 and first published on 13 Mar 2017


Article type: Paper
DOI: 10.1039/C7RA00592J
Citation: RSC Adv., 2017,7, 16109-16118
  • Open access: Creative Commons BY license
  •   Request permissions

    Predicted structural evolution and detailed insight into configuration correlation, mechanical properties of silicon–boron binary compounds

    B. Zhang, L. Wu and Z. Li, RSC Adv., 2017, 7, 16109
    DOI: 10.1039/C7RA00592J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements