Issue 18, 2017

Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids

Abstract

Herein, we report the synthesis of a metal-free coal-char supported polymeric g-C3N4/RGO (RPC) nano-photocatalyst for the efficient solar powered degradation of the noxious emerging pollutants ciprofloxacin (CIF) & β-estradiol (ESD) and conversion of CO2 into CH4, CO & O2. RPC shows good photocatalytic and adsorption activity owing to its high surface area and reduced charge recombination rate. The photodegradation results of the treated water sample were investigated in terms of reaction kinetics, active species trapping experiments, high resolution mass spectrometry (HR-MS) and Chemical Oxygen Demand (COD) analysis. The higher solar photoactivity is attributed to the higher surface area, higher visible absorption, charge transfer, and reduced recombination. The superoxide radical anions were found to be the major active species in photodegradation, which is also supported by the band structure analysis. The catalytic activity is highly enhanced by the addition of H2O2, O2 and O3 as they facilitate the formation of radicals. The possible degradation pathways for the degradation of CIF and ESD have been proposed. This work shows promising solar-active metal-free photocatalysts for efficient environmental remediation and CO2 conversion to fuels.

Graphical abstract: Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2017
Accepted
07 Aug 2017
First published
08 Aug 2017

New J. Chem., 2017,41, 10208-10224

Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids

A. Kumar, A. Kumar, G. Sharma, Mu. Naushad, R. C. Veses, A. A. Ghfar, F. J. Stadler and M. R. Khan, New J. Chem., 2017, 41, 10208 DOI: 10.1039/C7NJ01580A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements