Issue 2, 2017

Synthesis of substituted 2H-benzo[e]indazole-9-carboxylate as a potent antihyperglycemic agent that may act through IRS-1, Akt and GSK-3β pathways

Abstract

Based on high throughput screening of our chemical library, we identified two 4,5-dihydro-2H-benzo[e]indazole derivatives (5d and 5g), which displayed a significant effect on glucose uptake in L6 skeletal muscle cells. Based on these lead molecules, a series of benzo[e]indazole derivatives were prepared. Among all the synthesized dihydro-2H-benzo[e]indazoles, 8-(methylthio)-2-phenyl-6-p-tolyl-4,5-dihydro-2H-benzo[e]indazole-9-carboxylate (5e) showed significant glucose uptake stimulation in L6 skeletal muscle cells, even better than lead compounds. Additionally, 5e decreased glucagon-induced glucose release in HepG2 hepatoma cells. The 2H-benzo[e]indazole 5e exerted an antihyperglycemic effect in normal, sucrose challenged streptozotocin-induced diabetic rats and type 2 diabetic db/db mice. Treatment with 5e at a dose of 30 mg kg−1 in db/db mice caused a significant decrease in triglyceride and total cholesterol levels and increased the HDL-C level in a significant manner. The mechanistic studies revealed that the 2H-benzo[e]indazole 5e significantly stimulated insulin-induced signaling at the level of IRS-1, Akt and GSK-3β in L6 skeletal muscle cells, possibly by inhibiting protein tyrosine phosphatase-1B. This new 2H-benzo[e]indazole derivative has potential for the treatment of diabetes with improved lipid profile.

Graphical abstract: Synthesis of substituted 2H-benzo[e]indazole-9-carboxylate as a potent antihyperglycemic agent that may act through IRS-1, Akt and GSK-3β pathways

Supplementary files

Article information

Article type
Research Article
Submitted
16 Aug 2016
Accepted
11 Nov 2016
First published
15 Nov 2016

Med. Chem. Commun., 2017,8, 329-337

Synthesis of substituted 2H-benzo[e]indazole-9-carboxylate as a potent antihyperglycemic agent that may act through IRS-1, Akt and GSK-3β pathways

G. Taneja, C. P. Gupta, S. Mishra, R. Srivastava, N. Rahuja, A. K. Rawat, J. Pandey, A. P. Gupta, N. Jaiswal, J. R. Gayen, A. K. Tamrakar, A. K. Srivastava and A. Goel, Med. Chem. Commun., 2017, 8, 329 DOI: 10.1039/C6MD00467A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements