Jump to main content
Jump to site search

Issue 1, 2017
Previous Article Next Article

Human health trade-offs in the disinfection of wastewater for landscape irrigation: microplasma ozonation vs. chlorination

Author affiliations

Abstract

Wastewater reuse is becoming increasingly common, and there is a need for decentralized and small-scale systems to support the safe recovery of water resources. In this study, an integrated life cycle assessment (LCA) and quantitative microbial risk assessment (QMRA) were used to compare microplasma ozonation (an emerging technology) to chlorination (an established technology) for the disinfection of wastewater for landscape irrigational reuse. Three waterborne pathogens, Legionella pneumophila, Giardia, and Cryptosporidium parvum, were selected to include bacteria and protozoans covering the transmission routes of inhalation and ingestion. Inactivation data from the literature were coupled with bench-scale experiments (to establish inactivation parameters for L. pneumophila by ozone in wastewater) for the design and simulation of disinfection processes. Microplasma-based ozonation reduced more life cycle human health impacts as compared to chlorination for five of the six impact categories, because of the high susceptibility of the pathogens to ozone and the lower impacts stemming from electricity (required in ozonation) vs. chemical production (required in chlorination). These results were consistent across the electricity-fuel mixes of all fifty U.S. states. These results indicate that from the point of view of reducing human health impact, the emerging microplasma ozonation technology is superior to chlorination for wastewater reuse disinfection. To reduce the overall human health impact, future design efforts should focus on reducing process consumables (i.e., chemical and electricity consumption) through longer hydraulic residence times (HRTs), while maintaining adequate disinfectant dosing to provide reliable disinfection efficacy despite influent variability in compounds that may quench or interfere with the disinfectant.

Graphical abstract: Human health trade-offs in the disinfection of wastewater for landscape irrigation: microplasma ozonation vs. chlorination

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Sep 2016, accepted on 31 Oct 2016 and first published on 31 Oct 2016


Article type: Paper
DOI: 10.1039/C6EW00235H
Citation: Environ. Sci.: Water Res. Technol., 2017,3, 106-118
  • Open access: Creative Commons BY license
  •   Request permissions

    Human health trade-offs in the disinfection of wastewater for landscape irrigation: microplasma ozonation vs. chlorination

    S. Dong, J. Li, M. Kim, S. Park, J. G. Eden, J. S. Guest and T. H. Nguyen, Environ. Sci.: Water Res. Technol., 2017, 3, 106
    DOI: 10.1039/C6EW00235H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements