Issue 6, 2017

Colloidal characterization of CuO nanoparticles in biological and environmental media

Abstract

The relationships between the physicochemical properties of engineered nanomaterials (ENMs) and their adverse health and environmental effects are still unclear. In order to understand key nano-bio/eco interactions and to convert this knowledge into “Safety by Design” (SbyD) strategies, it is essential to study the colloidal properties of ENMs in nano(eco)toxicology-relevant media. In the frame of such a SbyD approach, this paper investigates the dispersion stability of copper oxide NPs surface-modified by means of four stabilizing agents, namely, [polyethylenimine (PEI), sodium ascorbate (ASC), sodium citrate (CIT), and polyvinylpyrrolidone (PVP)], which were used to achieve positive (PEI), negative (ASC, CIT), and neutral (PVP) surface charging of the NPs. The effects of these four stabilizers on the CuO NPs' physicochemical properties were investigated in different biological and environmental media by combining dynamic and electrophoretic light scattering (DLS and ELS), centrifugal separation analysis (CSA) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The results showed improved dispersion stability for CuO-CIT, CuO-ASC, and CuO-PEI in both Milli-Q and phosphate buffered saline (PBS) as compared to pristine CuO and CuO-PVP. The increased ionic strength of artificial fresh (AFW) and marine (AMW) waters strongly destabilized all the CuO NP suspensions, except for CuO-PEI dispersed in AFW. The presence of proteins and amino acids in the test media had a strong influence on the colloidal stability of all the dispersions. Characterization of colloidal properties and ion release rates in (eco)toxicological testing media will help to correlate some of these properties with (eco)toxicological responses, thus enabling prediction of the behavior of NPs in real environments.

Graphical abstract: Colloidal characterization of CuO nanoparticles in biological and environmental media

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2016
Accepted
21 Mar 2017
First published
22 Mar 2017

Environ. Sci.: Nano, 2017,4, 1264-1272

Colloidal characterization of CuO nanoparticles in biological and environmental media

S. Ortelli, A. L. Costa, M. Blosi, A. Brunelli, E. Badetti, A. Bonetto, D. Hristozov and A. Marcomini, Environ. Sci.: Nano, 2017, 4, 1264 DOI: 10.1039/C6EN00601A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements