Issue 5, 2017

Asymmetric Faradaic systems for selective electrochemical separations

Abstract

Ion-selective electrochemical systems are promising for liquid phase separations, particularly for water purification and environmental remediation, as well as in chemical production operations. Redox-materials offer an attractive platform for these separations based on their remarkable ion selectivity. Water splitting, a primary parasitic reaction in aqueous-phase processes, severely limits the performance of such electrochemical processes through significant lowering of current efficiencies and harmful changes in water chemistry. We demonstrate that an asymmetric Faradaic cell with redox-functionalization of both the cathode and the anode can suppress water reduction and enhance ion separation, especially targeting organic micropollutants with current efficiencies of up to 96% towards selective ion-binding. A number of organometallic redox-cathodes with electron-transfer properties matching those of a ferrocene-functionalized anode, and with potential cation selectivity, were used in the asymmetric cell, with cobalt polymers being particularly effective towards aromatic cation adsorption. We demonstrate the viability and superior performance of dual-functionalized asymmetric electrochemical cells beyond their use in energy storage systems; they can be considered as a next-generation technology for aqueous-phase separations, and we anticipate their broad applicability in other processes, including electrocatalysis and sensing.

Graphical abstract: Asymmetric Faradaic systems for selective electrochemical separations

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2017
Accepted
18 Apr 2017
First published
18 Apr 2017

Energy Environ. Sci., 2017,10, 1272-1283

Asymmetric Faradaic systems for selective electrochemical separations

X. Su, K. Tan, J. Elbert, C. Rüttiger, M. Gallei, T. F. Jamison and T. A. Hatton, Energy Environ. Sci., 2017, 10, 1272 DOI: 10.1039/C7EE00066A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements