Jump to main content
Jump to site search

Issue 43, 2017
Previous Article Next Article

On verdigris, part I: synthesis, crystal structure solution and characterisation of the 1–2–0 phase (Cu3(CH3COO)2(OH)4)

Author affiliations

Abstract

Known synthesis approaches for basic copper(II) acetates, the main components of historic verdrigis pigments were reinvestigated and revealed to be partially irreproducible. A modification of the reaction conditions led to the successful and reproducible synthesis of the 1–2–0 phase (Cu3(CH3COO)2(OH)4 = 1Cu(CH3COO)2·2Cu(OH)2·0H2O). The phase composition was derived from elemental and thermal analysis and confirmed by the crystal structure solution using synchrotron X-ray powder diffraction (XRPD) data. The 1–2–0 phase crystallises in space group Pbca with lattice parameters of a = 20.9742(1) Å, b = 7.2076(1) Å, and c = 13.1220(1) Å. The crystal structure consists of Cu2(CH3-COO)2(OH)4/3(OH)2/21/3− dimers, which are interconnected by corner sharing Cu(OH)2/3(OH)2/21/3+ squares forming layers perpendicular to the a-axis. The deep blue color of the solid originates from a reflectance maximum at 472 nm and from an absorbance maximum at 676 nm that is comparable with other historic blue pigments like azurite or Egyptian blue. IR- and Raman-spectroscopic properties of the solid were investigated as well, which demonstrated that the obtained product is identical with a previously synthesised verdigris phase that was obtained by applying historical procedures. Therefore, our reference data for the title compound will help to improve the understanding of the multiphase mixtures occurring in historic verdigris samples. The magnetic properties of the 1–2–0 phase were also investigated. At low temperatures the magnetic susceptibility is well described by a spin-1/2 Heisenberg chain with uniform antiferromagnetic nearest-neighbour spin exchange coupling of only one of three Cu magnetic moments. Due to the very strong antiferromagnetic coupling of the Cu2(CH3-COO)2(OH)4/3(OH)2/21/3− dimers their contribution to magnetism becomes relevant above ∼140 K, which results in the presence of two distinct temperature regions where Curie–Weiss behaviour of the magnetic susceptibility with different Curie constants and Weiss temperatures is found.

Graphical abstract: On verdigris, part I: synthesis, crystal structure solution and characterisation of the 1–2–0 phase (Cu3(CH3COO)2(OH)4)

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Sep 2017, accepted on 10 Oct 2017 and first published on 17 Oct 2017


Article type: Paper
DOI: 10.1039/C7DT03288A
Citation: Dalton Trans., 2017,46, 14847-14858
  • Open access: Creative Commons BY license
  •   Request permissions

    On verdigris, part I: synthesis, crystal structure solution and characterisation of the 1–2–0 phase (Cu3(CH3COO)2(OH)4)

    S. Bette, R. K. Kremer, G. Eggert, C. C. Tang and R. E. Dinnebier, Dalton Trans., 2017, 46, 14847
    DOI: 10.1039/C7DT03288A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements