Issue 25, 2017

The bouncing threshold in silica nanograin collisions

Abstract

Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson–Kendall–Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.

Graphical abstract: The bouncing threshold in silica nanograin collisions

Article information

Article type
Paper
Submitted
01 Apr 2017
Accepted
30 May 2017
First published
30 May 2017

Phys. Chem. Chem. Phys., 2017,19, 16555-16562

The bouncing threshold in silica nanograin collisions

M. L. Nietiadi, P. Umstätter, T. Tjong, Y. Rosandi, E. N. Millán, E. M. Bringa and H. M. Urbassek, Phys. Chem. Chem. Phys., 2017, 19, 16555 DOI: 10.1039/C7CP02106B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements