Jump to main content
Jump to site search

Issue 16, 2017
Previous Article Next Article

Synthesis, structure and bonding of actinide disulphide dications in the gas phase

Author affiliations

Abstract

Actinide disulphide dications, AnS22+, were produced in the gas phase for An = Th and Np by reaction of An2+ cations with the sulfur-atom donor COS, in a sequential abstraction process of two sulfur atoms, as examined by FTICR mass spectrometry. For An = Pu and Am, An2+ ions were unreactive with COS and did not yield any sulphide species. High level multiconfigurational (CASPT2) calculations were performed to assess the structures and bonding of the new AnS22+ species obtained for An = Th, Np, as well as for An = Pu to examine trends along the An series, and for An = U to compare with a previous experimental study and DFT computational scrutiny of US22+. The CASPT2 results showed that, like in the case of uranium, the new AnS22+ ions have ground states with triangular geometries, corresponding to the presence of a persulphide in the case of thorium that formally leads to a stable ThIVS22+ species, while a supersulphide appears to be present in the case of U, Np and Pu, formally leading to a AnIIIS22+ species. The computations also revealed that linear thioactinyl structures are higher in energy, with a difference that increases fourfold upon moving from U to Pu, apparently indicating that it will be even more pronounced for Am.

Graphical abstract: Synthesis, structure and bonding of actinide disulphide dications in the gas phase

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Mar 2017, accepted on 05 Apr 2017 and first published on 05 Apr 2017


Article type: Paper
DOI: 10.1039/C7CP01446E
Citation: Phys. Chem. Chem. Phys., 2017,19, 10685-10694
  •   Request permissions

    Synthesis, structure and bonding of actinide disulphide dications in the gas phase

    A. F. Lucena, N. A. G. Bandeira, C. C. L. Pereira, J. K. Gibson and J. Marçalo, Phys. Chem. Chem. Phys., 2017, 19, 10685
    DOI: 10.1039/C7CP01446E

Search articles by author

Spotlight

Advertisements