Issue 4, 2017

Probing the triplet correlation function in liquid water by experiments and molecular simulations

Abstract

Despite very significant developments in scattering experiments like X-ray and neutron diffraction, it has been challenging to elucidate the nature of tetrahedral molecular configurations in liquid water. A key question is whether the pair correlation functions, which can be obtained from scattering experiments, are sufficient to describe the tetrahedral ordering of water molecules. In our previous study (Dhabal et al., J. Chem. Phys., 2014, 141, 174504), using data-sets generated from reverse Monte Carlo and molecular dynamics simulations, we showed that the triplet correlation functions contain important information on the tetrahedrality of water in the liquid state. In the present study, X-ray scattering experiments and molecular dynamics (MD) simulations are used to link the isothermal pressure derivative of the structure factor with the triplet correlation functions for water. Triplet functions are determined for water up to 3.3 kbar at 298 K to display the effect of pressure on the water structure. The results suggest that triplet functions ([H with combining tilde](q)) obtained using a rigid-body TIP4P/2005 water model are consistent with the experimental results. The triplet functions obtained in experiment as well as in simulations evince that in the case of tetrahedral liquids, exertion of higher pressure leads to a better agreement with the Kirkwood superposition approximation (KSA). We further validate this observation using the triplet correlation functions (g(3)(r,s,t)) calculated directly from simulation trajectory, revealing that both [H with combining tilde](q) in q-space and g(3)(r,s,t) in real-space contain similar information on the tetrahedrality of liquids. This study demonstrates that the structure factor, even though it has only pair correlation information of the liquid structure, can shed light on three-body correlations in liquid water through its isothermal pressure derivative term.

Graphical abstract: Probing the triplet correlation function in liquid water by experiments and molecular simulations

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2016
Accepted
24 Dec 2016
First published
04 Jan 2017

Phys. Chem. Chem. Phys., 2017,19, 3265-3278

Probing the triplet correlation function in liquid water by experiments and molecular simulations

D. Dhabal, K. T. Wikfeldt, L. B. Skinner, C. Chakravarty and H. K. Kashyap, Phys. Chem. Chem. Phys., 2017, 19, 3265 DOI: 10.1039/C6CP07599A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements