Jump to main content
Jump to site search

Issue 5, 2017
Previous Article Next Article

Predicting point defect equilibria across oxide hetero-interfaces: model system of ZrO2/Cr2O3

Author affiliations

Abstract

We present a multi-scale approach to predict equilibrium defect concentrations across oxide/oxide hetero-interfaces. There are three factors that need to be taken into account simultaneously for computing defect redistribution around the hetero-interfaces: the variation of local bonding environment at the interface as epitomized in defect segregation energies, the band offset at the interface, and the equilibration of the chemical potentials of species and electrons via ionic and electronic drift-diffusion fluxes. By including these three factors from the level of first principles calculation, we build a continuum model for defect redistribution by concurrent solution of Poisson's equation for the electrostatic potential and the steady-state equilibrium drift-diffusion equation for each defect. This model solves for and preserves the continuity of the electric displacement field throughout the interfacial core zone and the extended space charge zones. We implement this computational framework to a model hetero-interface between the monoclinic zirconium oxide, m-ZrO2, and the chromium oxide Cr2O3. This interface forms upon the oxidation of zirconium alloys containing chromium secondary phase particles. The model explains the beneficial effect of the oxidized Cr particles on the corrosion and hydrogen resistance of Zr alloys. Under oxygen rich conditions, the ZrO2/Cr2O3 heterojunction depletes the oxygen vacancies and the sum of electrons and holes in the extended space charge zone in ZrO2. This reduces the transport of oxygen and electrons thorough ZrO2 and slows down the metal oxidation rate. The enrichment of free electrons in the space charge zone is expected to decrease the hydrogen uptake through ZrO2. Moreover, our analysis provides a clear anatomy of the components of interfacial electric properties; a zero-Kelvin defect-free contribution and a finite temperature defect contribution. The thorough analytical and numerical treatment presented here quantifies the rich coupling between defect chemistry, thermodynamics and electrostatics which can be used to design and control oxide hetero-interfaces.

Graphical abstract: Predicting point defect equilibria across oxide hetero-interfaces: model system of ZrO2/Cr2O3

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Jul 2016, accepted on 14 Dec 2016 and first published on 14 Dec 2016


Article type: Paper
DOI: 10.1039/C6CP04997D
Citation: Phys. Chem. Chem. Phys., 2017,19, 3869-3883
  • Open access: Creative Commons BY license
  •   Request permissions

    Predicting point defect equilibria across oxide hetero-interfaces: model system of ZrO2/Cr2O3

    J. Yang, M. Youssef and B. Yildiz, Phys. Chem. Chem. Phys., 2017, 19, 3869
    DOI: 10.1039/C6CP04997D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements