Issue 6, 2016

A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications

Abstract

Carbon nanotubes (CNTs) are synthesized through a novel low cost self-vaporized chemical vapor deposition (SCVD) technique from an indecomposable solid carbon source for the first time. This method was manipulated to avoid the injection of flammable gasses, by producing gaseous carbon (e.g. CO) through an in situ catalyzed gasification of the intermediate product induced by KOH. Simultaneously, the as-produced gaseous carbons will deposit onto the pre-imbedded Ni nanocatalyst surface and form CNTs. The growth mechanism is discussed in detail by adjusting the KOH amount. The as-prepared CNTs are rich in oxygen and deficiencies, which endow them with abundant active sites for electrochemical applications. Superior supercapacitor performance is achieved with a specific capacitance 6 times higher than that of commercial CNTs. This technique represents a novel, convenient approach toward large scale production of CNTs directly from a solid carbon precursor, and would show promising applications in various industrial fields.

Graphical abstract: A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2015
Accepted
13 Jan 2016
First published
13 Jan 2016

J. Mater. Chem. A, 2016,4, 2137-2146

A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications

Z. Zhang, S. Mu, B. Zhang, L. Tao, S. Huang, Y. Huang, F. Gao and Y. Zhao, J. Mater. Chem. A, 2016, 4, 2137 DOI: 10.1039/C5TA09631F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements